302049: Artificial Intelligence & Machine Learning							
Teaching Scheme		Credits		Examination Scheme			
Theory	3Hrs./Week	Theory	3	In-Semester	30 Marks		
Practical	2 Hrs./Week	Practical	1	End-Semester	70 Marks		
				Oral	25 Marks		
Prerequisites: Linear Algebra, Probability, Statistics, Logical Reasoning.							
Course Objectives:							
1. ACQUAINT with fundamentals of artificial intelligence and machine learning.							
2. LEARN feature extraction and selection techniques for processing data set.							
3. UNDERSTAND basic algorithms used in classification and regression problems.							
4. OUTLINE steps involved in development of machine learning model.							
5. FAMILIARIZE with concepts of reinforced and deep learning.							
6. IMPLEMENT AND ANALYZE machine learning model in mechanical engineering							
problems.							
Course Outcomes:							
On completion of the course, learner will be able to							
CO1. DEMONSTRATE fundamentals of artificial intelligence and machine learning.							
CO2. APPLY feature extraction and selection techniques.							
CO3. APPLY machine learning algorithms for classification and regression problems.							
CO4. DEVISE AND DEVELOP a machine learning model using various steps.							
CO5. EXPLAIN concepts of reinforced and deep learning.							
CO6. SIMULATE machine learning model in mechanical engineering problems.							
Course Contents							
Unit 1 In	troduction to A	I & ML			06 Hrs.		
History of AI,	Comparison o	f AI with Data	a Science, N	Need of AI in Me	chanical Engineering,		
Introduction to Machine Learning. Basics: Reasoning, problem solving, Knowledge representation,							
Planning, Learning, Perception, Motion and manipulation.							
Approaches to AI: Cybernetics and brain simulation, Symbolic, Sub-symbolic, Statistical.							
Approaches to	ML: Supervise	ed learning, Uns	upervised le	arning, Reinforcem	ent learning.		
Unit 2 Fe	eature Extraction	on and Selectio	n		08 Hrs.		
Feature extrac	tion: Statistical	features, Princip	pal Compon	ent Analysis.			
Feature selection: Ranking, Decision tree - Entropy reduction and information gain, Exhaustive,							
best first, Greedy forward & backward, Applications of feature extraction and selection algorithms							
in Mechanical Engineering.							
Unit 3 Cl	assification &]	Regression			08 Hrs.		
Classification: Decision tree, Random forest, Naive Bayes, Support vector machine.							
Regression: Lo	ogistic Regressi	on, Support V	ector Regre	ssion. Regression	trees: Decision tree,		
random torest,	K-Means, K-Ne	arest Neighbor	(KNN). Apj	plications of classif	ication and regression		
algorithms in Mechanical Engineering.							

Unit 4	Development of ML Model	07 Hrs.				
Problem id	Problem identification: classification, clustering, regression, ranking. Steps in ML modeling, Data					
Collection, Data pre-processing, Model Selection, Model training (Training, Testing, K-fold Cross						
Validation), Model evaluation (understanding and interpretation of confusion matrix, Accuracy,						
Precision, F	Recall, True positive, false positive etc.), Hyper parameter Tuning, Predictio	ns.				
Unit 5	Reinforced and Deep Learning	08 Hrs.				
Characteri	stics of reinforced learning; Algorithms: Value Based, Policy Based, I	Model Based;				
Positive vs Negative Reinforced Learning; Models: Markov Decision Process, Q Learning.						
Characteristics of Deep Learning, Artificial Neural Network, Convolution Neural Network.						
Application	of Reinforced and Deep Learning in Mechanical Engineering.					
Unit 6	Applications	08 Hrs.				
Human Ma	chine Interaction, Predictive Maintenance and Health Management, Fa	ult Detection,				
Dynamic System Order Reduction, Image based part classification, Process Optimization, Material						
Inspection, Tuning of control algorithms.						
	Books and other resources					
Text Books	•					
1. Deisenroth, Faisal, Ong, Mathematics for Machine Learning, Cambridge University Press,						
2020.						
2. B Joshi, Machine Learning and Artificial Intelligence, Springer, 2020.						
3. Parag Kulkarni and Prachi Joshi, "Artificial Intelligence – Building Intelligent Systems",						
PHI learning Pvt. Ltd., ISBN – 978-81-203-5046-5, 2015						
4. Stuart Russell and Peter Norvig (1995), "Artificial Intelligence: A Modern Approach," Third						
edition, Pearson, 2003.						
References	Books:					
1. Sola Glo	unki, Kumar, Nayyar, Emerging Trends and Applications of Machine lubal, 2018.	Learning, IGI				
2. Mohri, Rostamizdeh, Talwalkar, Foundations of Machine Learning, MIT Press, 2018.						
3. Kumar, Zindani, Davim, Artificial Intelligence in Mechanical and Industrial Engineering,						
CR	C Press, 2021.					
4. Zsolt Nagy - Artificial Intelligence and Machine Learning Fundamentals-Apress (2018)						
5. Arti	ficial Intelligence by Elaine Rich, Kevin Knight and Nair, TMH					
Web Refer	ences:					
1. <u>http:/</u>	/nptel.ac.in/courses/111101003/					
2. https://nptel.ac.in/courses/106/106/106106202/						
3. <u>https://nptel.ac.in/courses/112/103/112103280/</u>						
4. <u>https://www.analyticsvidhya.com/</u>						

Term Work **List of Experiments:** 1. To study supervised/unsupervised/Reinforcement learning approach. 2. To acquire, visualize and analyze the data set (from time-domain/ frequency-domain/ etc.). 3. To extract features from given data set and establish training data. 4. To select relevant features using suitable technique. OR 5. To use PCA for dimensionality reduction. 6. To classify features/To develop classification model and evaluate its performance (any one classifier). 7. To develop regression model and evaluate its performance (any one algorithm). 8. Markov process for modelling manufacturing processes. OR 9. Reinforced Learning for optimizing engineering designs / Robot Guidance and Navigation. 10. GA for optimization of multi-dimensional function / path planning in robotics. OR 11. NN for parameter and model identification / tuning of Control Algorithms. Note:

- Students need to apply the computational algorithms using suitable software / programming language.
- Experiment 1, 2, 3, 6 & 7 are compulsory. Experiment 2 to 7 to be taken on same data set